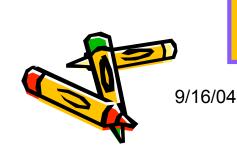


Search for Leptoquarks


Simona Rolli
Tufts University
Tev4LHC, Fermilab September 16, 2004

Outline

- Why Leptoquarks?
- Current Results from the TeVatron
 - Final Run II results
- LHC prototype analyses
 - Prospects
 - Issues
- Conclusions

1st and 2nd generation scalar LQ only! Lepton signatures!

Theoretical Motivation

- Leptoquarks (LQ) are hypothetical particles which appear in many SM extensions to explain symmetry between leptons and quarks
 - SU(5) GUT model
 - superstring-inspired models
 - 'colour' SU(4) Pati-Salam model
 - composite models
 - technicolor
 - •LQs are coupled to both leptons and quarks and carry SU(3) color, fractional electric charge, baryon (B) and lepton (L) numbers

-spin 0 (scalar)

*couplings fixed, i.e., no free parameters

·Isotropic decay

-spin 1 (vector)

*anomalous magnetic (k_{θ}) and electric quadrupole (\Box_{θ}) model-dependent couplings

-Yang-Mills coupling: $k_e = \prod_e 0$

-Minimal coupling: $K_0=1$, $\square_0=0$

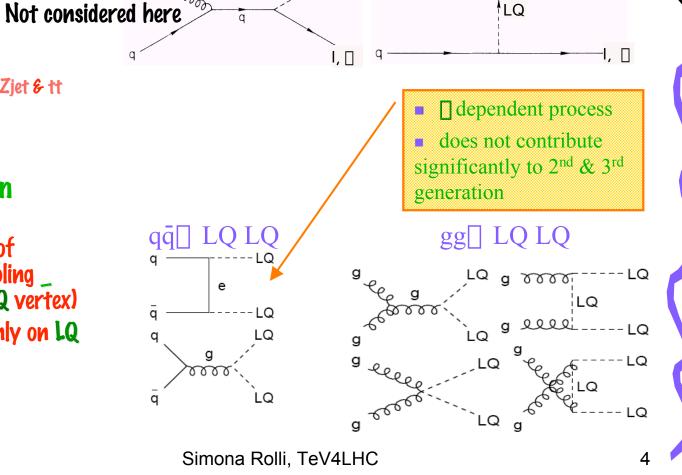
-Pecay amplitude proportional to (1 + cos _*)2

Experimental evidence searched:

- indirectly: LQ-induced 4-fermion interactions
- directly: production cross sections at collider experiments

Simona Rolli, TeV4LHC

LQ at Hadron Colliders


Single production

- strongly depends on \square
- possible signatures:
 - |*|- + jet
 - I∏ + jet
- Main background: Zjet & tt

Pair production

- Practically independent of Yukawa coupling _ (only g-LQ-LQ vertex)
- Pepends mainly on LQ mass

qg

q mmmmmmm p

qg□ ℓLQ,

Leptoquark Decay

Each generation can decay into 3 final states: \square = Br(LQ \square |q)

Exclusive to the Tevatron

1st Generation

$$\square = 0.5$$
 LQ $\overline{LQ} \rightarrow e^{\pm} v_e q_i q_i$

$$\Box = \mathbf{0} \qquad LQ \overline{LQ} \rightarrow v_e v_e q \overline{q}$$

2nd Generation

$$LQ \ \overline{LQ} {\rightarrow} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} q \overline{q}$$

LQ
$$\overline{LQ} \rightarrow \mu^{\pm} \nu_{\mu} q_{i} q_{i}$$

$$LQ \; \overline{LQ} {\rightarrow} \nu_{\mu} \nu_{\mu} q \overline{q}$$

3rd Generation

$$LQ \overline{LQ} \rightarrow \tau^+\tau^- q\bar{q}$$

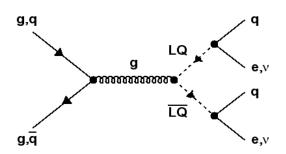
$$LQ \ \overline{LQ} {\rightarrow} \tau^{\underline{+}} \nu \ q_{\underline{i}} q_{\underline{i}}$$

$$LQ \; \overline{LQ} {\rightarrow} \nu_{\tau} \nu_{\tau} q \overline{q}$$

This talk! -

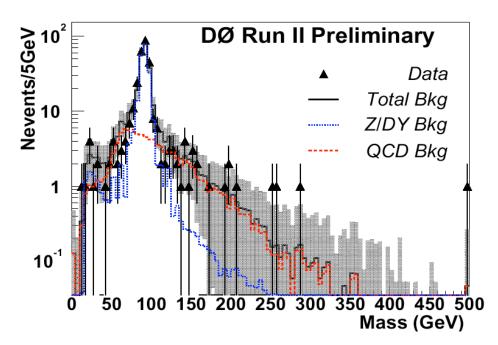
$$BR = \square^2$$

$$BR = 2 \square (1 - \square)$$



 $\Pi = 1$

MET+2j


$$BR = (1 - \square)^2$$

First Gen - eejj at DØ

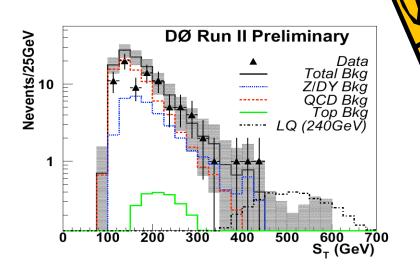
SM background

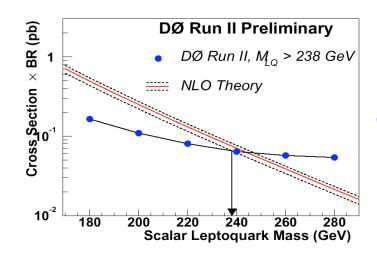
- Prell-Yan+2jets
- > Top (W□ e□)
- > QCD/Fakes

Preliminary Selection

- \checkmark 2 EM clusters E_T > 25 GeV (1 cluster w/ track match)
- $\sqrt{2}$ jets $E_T > 20$ GeV
- \checkmark Z veto (80 < M_{ee} < 102) GeV

Simona Rolli, TeV4LHC

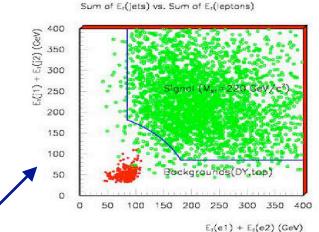

Dø – eejj Results


Final event Selection Scalar Sum of objects E_T $S_T(eejj) > 450 GeV$

Signal Acceptance (12 - 33)% M(LQ) (180 - 280) GeV/ (c^2)

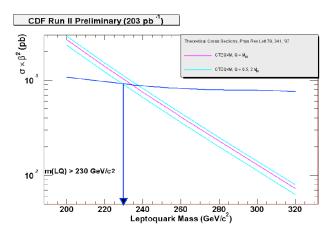
Luminosity 1.75 pb⁻¹ No. Exp. 0.4 ± 0.1 Observed 0

95% CL M_{LQ}<238 GeV/c²



1st Gen - eejj at CDF

Selection


- \checkmark 2 electrons (CC,CE) $E_T > 25$ GeV
- \checkmark 2 jets, $E_r(j1) > 30 \text{ GeV}$, $E_r(j2) > 15 \text{ GeV}$
- \checkmark Z Veto (76 < $M_{\mu\mu}$ < 110) GeV
- \checkmark Electrons/Jets: $E_T^{j1(e1)} + E_T^{j2(e2)} > 85 \text{ GeV}$
- $\sqrt{(E_T(j_1) + E_T(j_2))^2 + (E_T(e_1) + E_T(e_2))^2} \frac{1/2}{2} > 200 \text{ GeV}$

Signal Acceptance ~(32 - 40)%

 $M(LQ) - 200 - 320 \text{ GeV/c}^2$

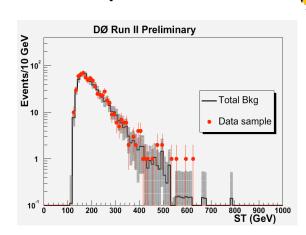
Luminosity 203 pb⁻¹
Acceptance (32-42)%
Background 6.2^{+3.1}
Observed 4

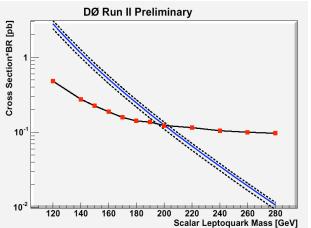
Exclude at 95% CL \underline{M}_{LQ} <230 GeV/ \underline{c}^2

Ist Gen -- ej □j at Dø

SM background

- > W +2jets
- Top (I + jets and dilepton)
- > QCD/Fakes

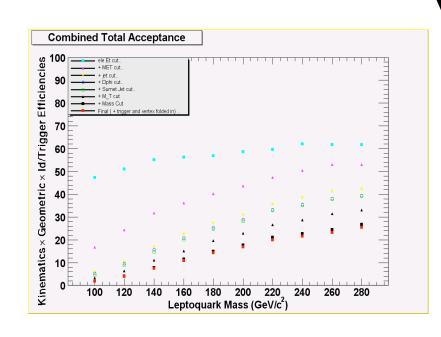

Selection


- \checkmark 1 electron (w/em cluster track match) E_{τ} > 35 GeV
- ✓ MET > 30 GeV
- \checkmark 2 jets E_T > 25 GeV
- ✓ PPhi (MET,jet) > 8°
- √ S_T(j1,j2,e,MET) > 330 GeV
- $\sqrt{M_T(e,v)} > 130 \text{ GeV}$

Signal Acceptance ~(13 - 25)%

 $m(LQ)^{-1}60-280 \text{ GeV/c}^2$

Luminosity $1.75 \, \text{pb}^{-1}$ Background 4.7 ± 0.8 Observed 2


 $m_{1.0} < 194 \text{ GeV/c}^2 @ 95\% \text{ C.L.}$

Ist Gen - e□ij at CDF

Selection

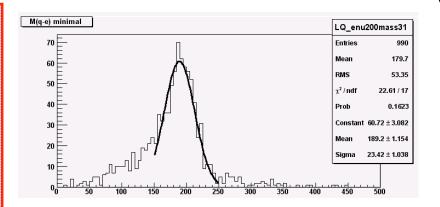
- **€** 1 central electrons with $E_T > 25$ GeV
- **★** MET > 60 GeV
- **♥** Veto on 2nd electron, central loose or Plug
- \checkmark 2 jets with $E_T > 30 \text{ GeV}$
- \bullet $\square\square$ (MET-jet) > 10°
- E_T(j1) + E_T(j2) > 80 GeV
- \bigstar M_T(e- \square) > 120
- **LQ** mass combinations

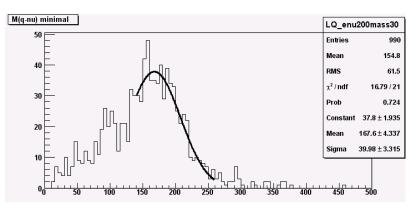
Signal Acceptance (2 - 22)% m(LQ) (2 - 280) GeV/c²

The invariant mass of the electron-jet system and the transverse mass of the neutrino-jet system are selected where the jet assignment is made such that the difference between the electron-jet mass and the neutrino-jet transverse mass is minimized.

CDF - epij - Mass combination

The peak of the *ej* histogram is fitted with a gaussian

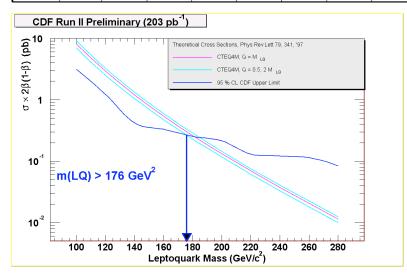

rough estimate of the spread of the distribution in the signal region.

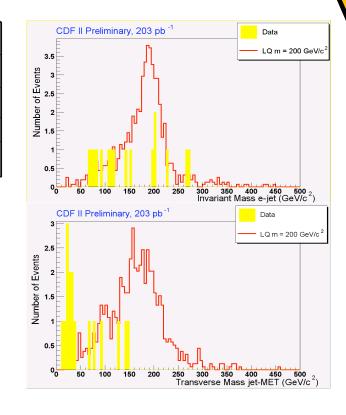

Several masses (120-160-200-240-280) tested:

□。 15%.

The \Box -q transverse mass distribution is fitted including the high mass tail end, with a Gaussian to estimate the signal spread.

□□ 25%.

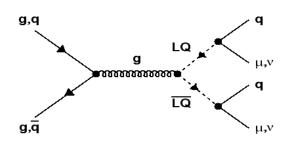




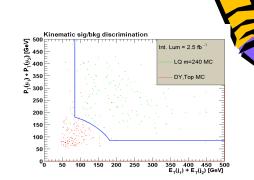
 $3\square$ cut around the nominal mass to select LQ candidates of a given mass

CDF - eqij Results

Mass	100	120	140	160	180	200	220	240	260	280
W+2 jets	1.5±0.9	1.5±0.9	1.5±0.9	2.5±1.13	2.5±1.13	2.5±1.13	2.0±1.0	2.0±1.0	1.5±0.88	0.5±0.5
top	2.7±0.6	3.3 ±0.6	3.12 ±0.5	2.8 ±0.5	2.5 ±0.5	2.03 ±0.4	1.63 ±0.4	1.08 ±0.3	0.8 ±0.22	0.6 ±0.21
Z+jets	0.05 ±0.01	0.05±0.01	0.08±0.02	0.08±0.02	0.08±0.02	0.08±0.02	0.06±0.02	0.06±0.02	0.04±0.01	0.04±0.01
Total Data	4.3±1.03	4.9 ±1.05	4.7 ±1.1	5.4 ±1.2 4	5.0 ±1.2	4.6 ±1.23	3.7 ±1.06	3.1 ±1.0 2	2.3 ±0.9 2	1.1 ±0.6 1


Luminosity 203pb⁻¹

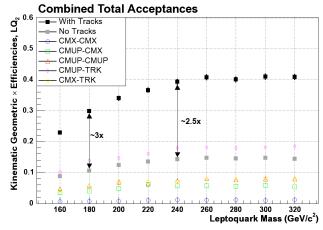
9/16/04


Simona Rolli, TeV4LHC

2nd Gen. -- μj μj at CDF

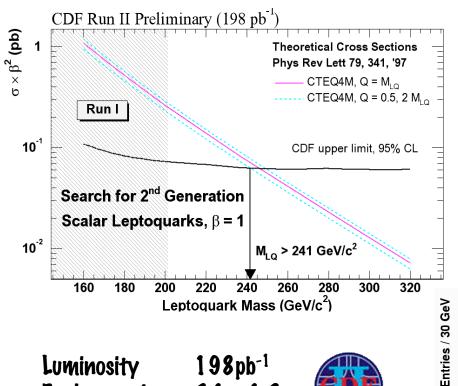
Selection

- \Rightarrow 2 muons with $P_T > 25$ GeV
- ❖ 2 jets with E_T(j1,j2) > 30,15 GeV
- * Pimuon Mass Veto:
- 76 < $M_{\mu\mu}$ < 110, $M_{\mu\mu}$ < 15 GeV



SM Backgrounds

- > Drell-Yan+2jets
- > Fakes
- > Top (W□ □□)


- $\star E_T(j_1) + E_T(j_2) > 85 \text{ GeV} \text{ and } P_T(\mu_1) + P_T(\mu_2) > 85 \text{ GeV}$
- $(E_T(j_1) + E_T(j_2))^2 + (P_T(\mu_1) + P_T(\mu_2))^2)^{1/2} > 200 \text{ GeV}$

2nd Gen. -- μj μj Results

[þþ] DØ Run II Preliminary $\beta = BF(LQ_2 \rightarrow \mu j) = 1.0$ NLO cross section Error Band LO cross section 1.5 95% C.L. upper limit, β=1 1 0.5 0 200 160 180 220 140 M(LQ2) [GeV]

Luminosity 198pb^{-1} Background 3.1 ± 1.2 Observed 2

Luminosity 1.6 ± 0.5 1.6 ± 0.5

D∅ Run II Preliminary

 M_{LQ} < 241 GeV/ c^2 at 95% CL

 M_{LQ} < 186 GeV/ c^2 at 95% CL

2nd Gen - □□ij at CDF

SM background

- > W +2jets
- For (1 + jets and dilepton)
- > QCD/Fakes

$$\begin{split} \mathsf{IM}(\boldsymbol{\mu}, \mathbf{j_1}) - \mathsf{M}_{\mathsf{LQ}} \mathsf{I} < 2\boldsymbol{\sigma_1} \\ & \quad \text{or} \\ \mathsf{IM}(\boldsymbol{\mu}, \mathbf{j_2}) - \mathsf{M}_{\mathsf{LQ}} \mathsf{I} < 2\boldsymbol{\sigma_2} \end{split}$$

Sigma's determined from generator-level matched reconstructed objects.

Selection

Z veto (tight/loose pair)
No 2nd muon (CMUP, CMX, or stubless)

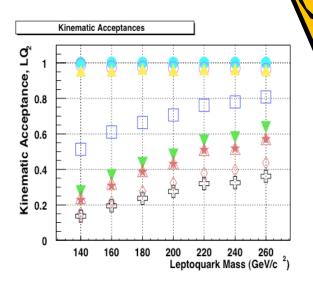
 $P_{T}(\mu) > 25 \text{ GeV}$

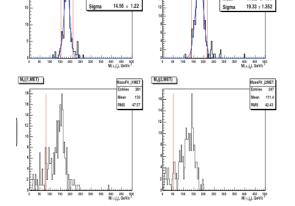
⋭_⊤> 60 GeV

2 jets, @ E_T>30GeV

 $\Delta \phi(\mu, \not\models_{\tau}) < 175^{\circ}, \ \Delta \phi(\not\models_{\tau}, \text{jets}) > 5^{\circ}$

 $E_{\tau}(jet1)+E_{\tau}(jet2) > 80 \text{ GeV}$


 $M_T(\not\!\!E_T,Muon) > 120 \text{ GeV/c}^2$

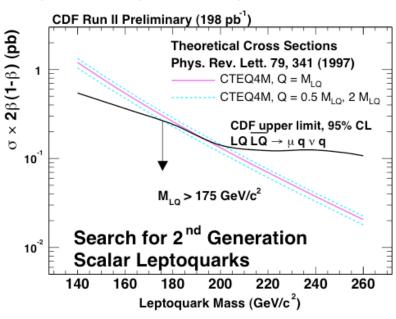

Mass Cut

$$M_T(\not\!\!\!E_T,j_1) > T_1(min)$$
or
 $M_T(\not\!\!\!E_T,j_2) > T_2(min)$

$$T_1(min) =$$
20 + (M_{LO} - 120) GeV/c²

$$(T_2(min) = 20 + (M_{LQ} - 120)/2 \text{ GeV/c}^2)$$

ndi at CDF - Results


Final Selection

	140	160	180	200	220	240	260
W	0.92 ± 0.06	1.44 ± 0.10	1.44 ± 0.10	1.67 ± 0.11	1.65 ± 0.11	0.93 ± 0.06	0.44 ± 0.03
Top	1.69 ± 0.21	1.84 ± 0.23	1.35 ± 0.17	1.00 ± 0.39	0.80 ± 0.29	0.67 ± 0.08	0.52 ± 0.06
Z	0.18 ± 0.01	0.22 ± 0.02	0.19 ± 0.01	0.18 ± 0.01	0.14 ± 0.01	0.05 ± 0.00	0.04 ± 0.00
QCD	0.29 ± 0.29	0.29 ± 0.00					
Total	3.09 ± 0.57	3.74 ± 0.62	3.22 ± 0.56	3.08 ± 0.53	2.83 ± 0.51	1.94 ± 0.44	1.30 ± 0.39
Data	3	3	2	0	0	0	0

Luminosity 198pb⁻¹

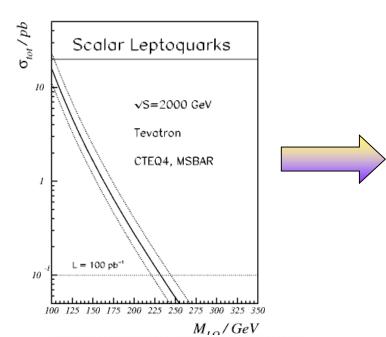
Exclude at 95% CL M_{LQ} < 175 GeV/c²

At the End of TeVatron Run II

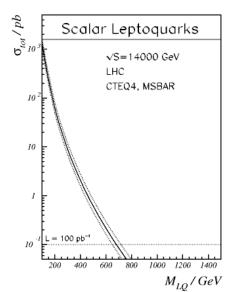
Assumptions:

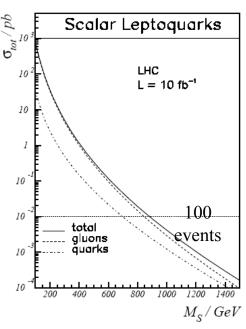
Same acceptances as now Number of events observed = number of predicted background Same errors

 \square = 1 mass limit up to 250-300 GeV/c²


 \Box = 0.5 mass limit up to 230-280 GeV/c²

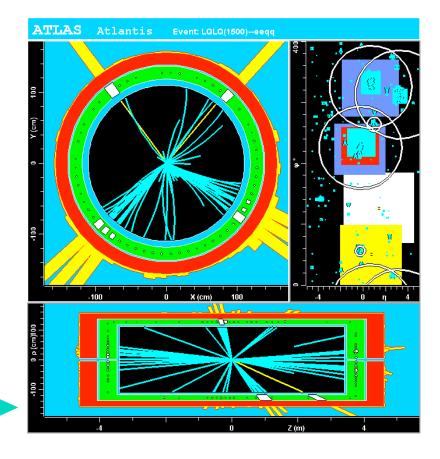
Preliminary




From the TeVatron to LHC

Theoretical Cross Sections Phys. Rev. Lett. 79, 341 (1997)

$$\sigma(pb){:}\; p\; \overline{p} \to LQ_s + \overline{LQ}_s + X$$



Leptoquarks in ATLAS

- Scalar leptoquarks production studied
- Pair production
 - Iljj channel
 - □ jj channel
- Simulation tools:
 - PYTHIA
 - qq 🛮 LQ LQ
 - gg 🗌 LQ LQ
 - ATLAS fast simulation (ATHENA-ATLFAST)

LQ LQ ☐ e⁺e⁻qq m_{LQ}=1500 GeV (schematic view) V.A. Mitsou, I. Panagoulias, Th. Papadopolou, Physics at LHC, Vienna 2004

Simona Rolli, TeV4LHC

2 leptons + 2 jets topology

Signal

LQ LQ | Itqlq

1st and 2nd generation LQs

M _{LQ} (TeV)	[] [] [fb)
1.0	5.0
1.2	1.3
1.3	0.7
1.5	0.2
1.7	0.07
2.0	0.015

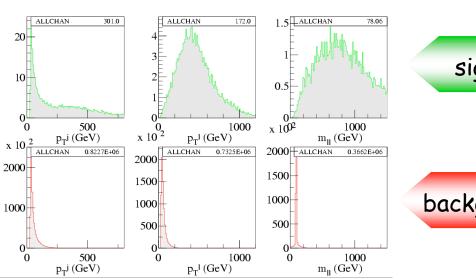
Background

- QCD: huge, but eliminated after high-p_T isolated leptons and high-m_{lj} cuts are applied
- Drell-Yan: eliminated by high-m_{li} cut

Process	□□BR (pb)
Zjet (lljj)), p _T > 20 GeV	1 380
tt (l□j l□j)	11
ZZ (lljj)	1.2
ZW (lljj)	1.2
WW (l□ l□)	3.3

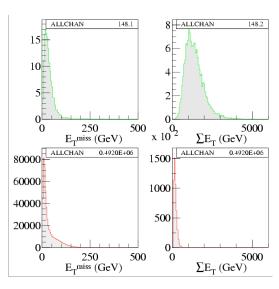
₩First level cuts:

- •At least 2 jets with $p_T>30$ GeV and $I_{\square}I<5.0$
- •2 same-flavour, opposite- sign leptons with $p_T>30$ GeV and $I_{\square} k < 2.5$

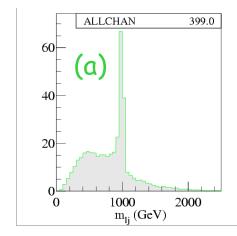


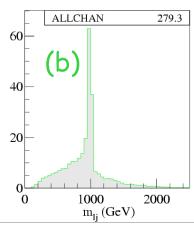
2 letpons & 2 jets topology

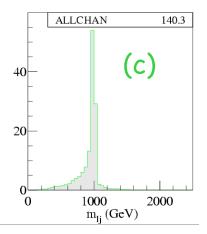
First level cuts:


At least 2 jets with $p_T>30$ GeV and $|\Box|<5.0$

2 same-flavour, opposite- sign leptons with p_{\uparrow} 30 GeV and $| \Box | < 2.5$


E₁: sum of transverse energy in the calorimeters




M_{Ilii} Invariant Mass

m _{li} combination	lm_{lj} - m_{LQ} l < 100 GeV			
m _{lj} comomation	# events	%		
(a) all combinations	136/399	35%		
(b) two leading jets	126/279	45%		
(c) two leading jets; minimum-Δm _{lj} combination	98/140	70%		

Provides clearest signal

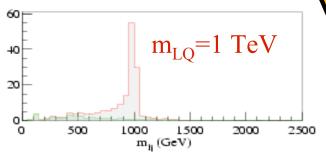
 m_{LQ} =1 TeV

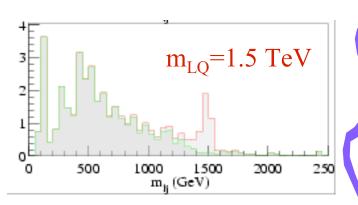

Simona Rolli, TeV4LHC

Iljj: Selection Cuts

- Similar cuts imposed for both eejj & □□jj channels
- Cuts optimized to maximize significance for all leptoquark masses
 - at least 2 jets with $p_T > 70$ GeV and $I \square I < 5.0$
 - 2 same-flavour, opposite- sign leptons with $p_T > 100$ GeV and $I \square I < 2.5$
 - M_{\parallel} > 180 GeV (to remove Z events)
 - Emiss < 70 GeV (for tt background)
 - ΣE_T > 570 GeV

m_{LO} reconctructed from two leading jets with minimum- Δm_{li} combination

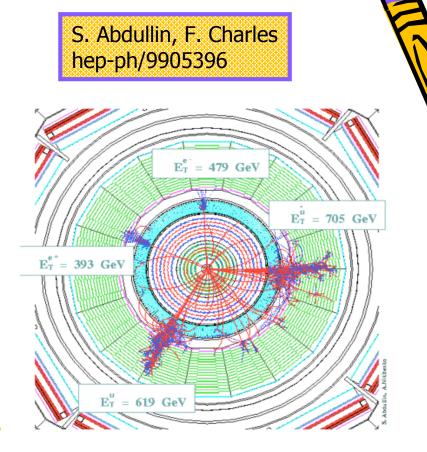


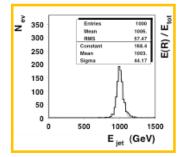

Iljj: Expected Significance

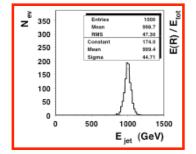
- First generation leptoquarks
- Integrated luminosity (L=30 fb-1)

M _{LQ} (TeV)	Signal	Background	S/√B
1.0	126	4.65	58
1.2	27.6	4.14	14
1.3	16.1	3.46	10.7
1.5	4.49	1.86	5.9

Preliminary

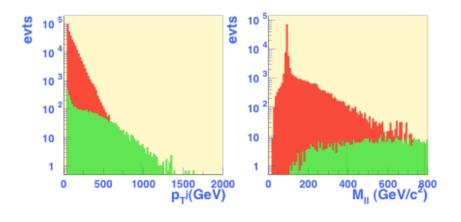


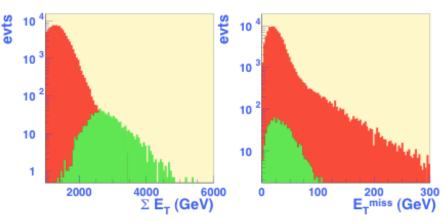



Signal can be clearly observed for $m_{LQ} = 1.3 \text{ TeV}$ Similar results obtained for $\square\square$ channel

LQ at CMS

CMSJET fast simulation (compared to CMSIM)


Simona Rolli, TeV4LHC


LQ at CMS - Selection

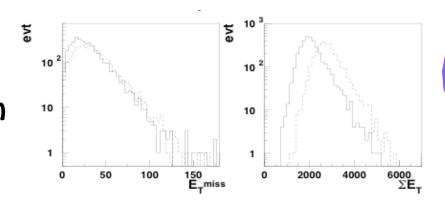
Selection cuts

- 2 isolated leptons (SF OS) with $p_T > 40$ GeV, $|\eta| < 2.4$; $m_{ll} > 150$ GeV
- At least 2 jets with $E_T > 60 \text{ GeV}$, $|\eta| < 4.5$
- $E_T^{miss} < 185 \text{ GeV}$, $\Sigma E_T > 1700 \text{ GeV}$, $E_T^{miss}/\Sigma E_T < 0.04$
- $\Delta m_{lj} < 310 \text{ GeV}$, the peak window $\Delta m = 210 \text{ GeV}$

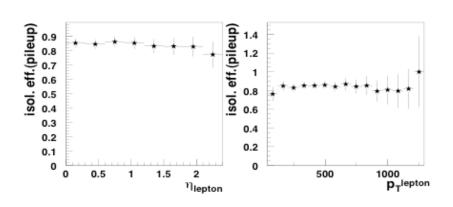
LQ at CMS - Sensitivity

Accepted lj combinations and significance for $L = 100 \text{ fb}^{-1}$ eejj channel

M_{LQ} (GeV)	900	1200	1400	1500
Signal	2584	174.4	49	24.6
Background	240	45.27	11.3	7.5
$\sigma = \frac{S}{\sqrt{S+B}}$	49	11.8	6.3	4.34
$\sigma = \frac{S}{\sqrt{B}}$	167	25.9	14.6	9.0

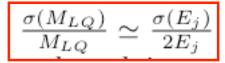

Expected 95% C.L. limit m(LQ) < 1.47 TeV for $\square = 1$ m(LQ) < 1.2 TeV for $\square = 0.5$

LQ at CMS - Effects of Pile-up

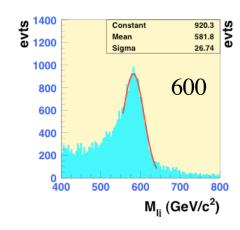

~25 interactions per bunch crossing at 10³⁴ cm⁻² s⁻¹

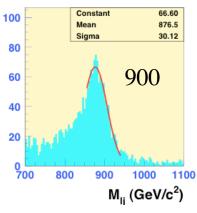
□E_T increase ~ 800 GeV;
No considerable effect on MET
Pegradation of lepton isolation (both track-based and calo-based)

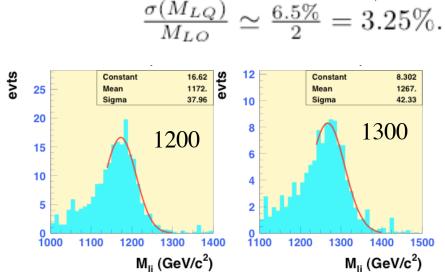
15% degradation $(p_T \text{ and } \square \text{ dependence})$

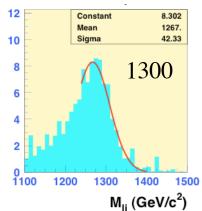


Simona Rolli, TeV4LHC


LQ at CMS - Mass Resolution


$$M_{LQ} = \sqrt{(\tilde{p_l} + \tilde{p_{jet}})^2} \simeq \sqrt{2E_l E_j (1 - \cos\theta)}$$




due to the excellent lepton energy resolution in CMS

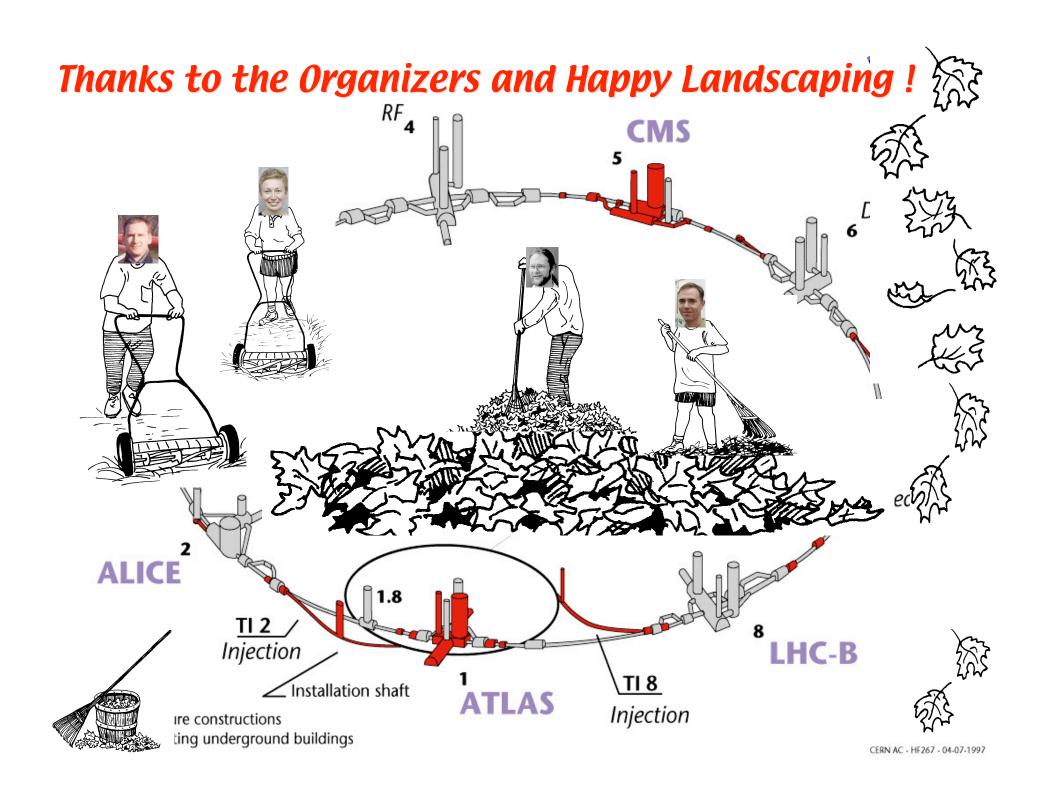
For high mass LQ and high energy jets the constant term dominates

9/16/04

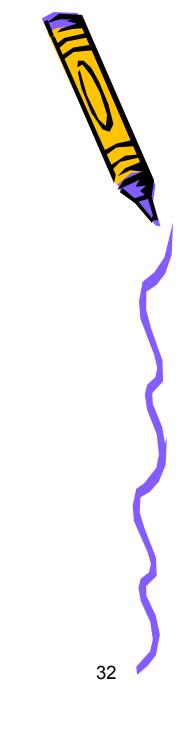
Simona Rolli, TeV4LHC

Conclusions

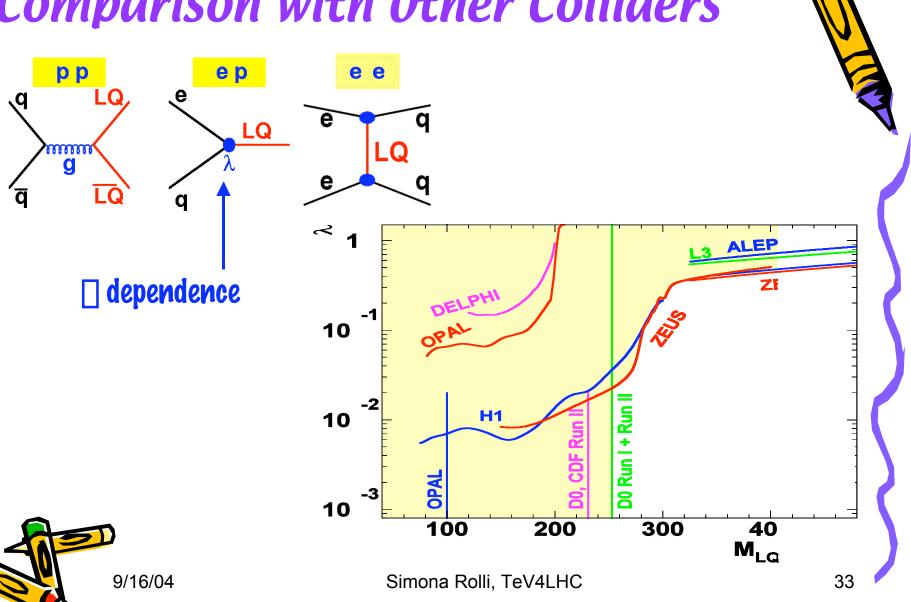
Searches for 1st and second generation LQ's are currently well established at the TeVatron;


Current limits are superseding the existing ones from Run I Choice of cuts very similar among the 2 experiments

Final reach ~300 GeV/c²


Both ATLAS and CMS have carried on feasibility studies for searches for 1st and 2nd generation LQ Cuts very similar to TeVatron Issue of pile-up discussed in CMS

Final reach ~1500 GeV/c²



Backup Slides

Comparison with Other Colliders

